Developing a Narrative Game
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Deniz Bicer*

Abstract

The purposed of the project was to create a narrative based walk-
though simulator virtual reality game. The game used the Dive VR
gear with an iPhone as a platform. The control input was through
a standard bluetooth controller. The game progressed by player
interaction with specific objects in the virtual environment. Au-
dio narrations provided the player with clues on how to proceed.
Graphical effects such as shadows, lights, bloom and anti-aliasing
were implemented. They were chosen according to the needs of the
interactive story in the virtual environment.

Keywords: game programming, narrative game

1 Content Creation

Blender was used as for the three dimensional modeling. Low-
polygon meshes were used to optimize the rendering because the
target platform was a mobile device. We wrote a custom obj for-
mat exporter for blender to support custom written object loader in
the engine. Photoshop was used to texture the models. Voice ac-
tors were employed for the narrative dialogues. The dialogues were
recorded and pieced together by an audio recording software.

2 Graphics
2.1 Lighting

Phong shading is used for lighting where light positions are defined
in geometry and our object loader finds and put them in a collection
containing lights. Due to split screen view, matrices for left and
right eye are calculated separately and loaded to shaders as uni-
form for further Phong lighting calculations. In fragment shader
(shader.fsh) diffuse, specular and ambient contributions are calcu-
lated, where texture color is used in the calculation of diffuse term.

2.2 Shadows

Shadow mapping is used for creating dynamic shadows. In first
pass we attach shadow texture as GL-DEPTH-ATTACHMENT us-
ing frame buffer object. Instead of view matrix for eye this time
we send light direction, hence resulting in a shadow texture map.
In second pass we have to compare depth stored in texture map
recorded in last pass and depth in this pass. To calculate depth in
second pass we pass lightModel ViewProjection matrix as uniform
and multiply it with position to calculate point in light space. This
point is sent to vertex shader, here as it is not being perspective
transformed, we divide it with w component and convert it to NDC
coordinated. If this depth (z component) is greater than depth from
shadow texture then we multiply the light with a predefined shadow
factor.

*deniz.bicer@rwth-aachen.de
Traheel.yawar @rwth-aachen.de
tali.arslan@rwth-aachen.de

Raheel Yawar!

Ali Arslan?

2.3 Blur

Gaussian blur effect has been used where we first save the scene
in fbo then pass its captured fbo texture to vertical Gaussian filter
which is written in fragment shader (blur.fsh). The resulting fbo
captured texture is passed through horizontal Gaussian filter.

2.4 Bloom/Glow

To achieve Bloom effect we specific locations by the help of tex-
ture alpha channel. We adjust alpha of glow regions to a particular
value. For bloom effect, at first we apply Blur effect by the method
explained in last section. The resulting texture attachment of fbo is
being blended with normal scene. The blending is done in another
extra pass in separate fbo. Another shader (blend.fsh) was written
to achieve desired effect.

2.5 Antialiasing

We are using Fast Approximate Anti-Aliasing (FXAA) tech-
nique for which we have added functions in our fragment shader
(post.fsh). This way all the edges, which result from alpha blended
textures and pixel shaders are being smoothed.

3 Game Logic

In the part of game logic, features which make our game functional
and intractable, are implemented. Overall what has been done are;
loading objects that are exported from blender, sorting the objects
out to the related data structures. In addition the interaction of the
game via a game controller and the head movements of the player
are implemented. After that the sequencing and narration of the
game is included so that the player can be guided through a story
line.

3.1 Object Loader

Our object loader accepts one object file which has all the objects
of the game. The objects are sorted out according to a name con-
vention. They all have their object type and name, where the type
says what that object is and the name says in which room that object
is. According to that we categorize the objects according to rooms.
This helps us during collision detection and rendering the objects
for different texture atlases. The types are important for intractable
objects, where we need to instantiate a special object like doors and
triggers, which are extended from object class.

3.2 Collision Detection

We needed collision detection for a feel of a real simulation of an
environment where you cannot go through walls or objects. We
used Axis Aligned Bounding Box (AABB). This part took a lot of
time because of confusions at the coordinate systems. First the view
matrixes were used to find out where the player is, but it was hard
to keep up since the position of player and objects were changing
all the time. After failure of this approach, we trace our own player



position at a variable. Next step was to consider the room transi-
tions. We only take account the objects which are at the current
room, so we need to change the object set every time we switch
to a new room. Here we use the categorized objects which come
from the object loader. Door frames are extended to be used as an
in between room. When the player leaves the door frame, we check
which room they are in currently and according to that object set is
switched to the current room.

3.3 Audio

We first used OpenAL to load the audios and play them when they
are needed. It was convenient since OpenAL is similar to OpenGL,
so learning the logic was easier. Also it provides lots of features
to enhance the players sound experience; like the position of the
sound, stereo audios, etc. We had to stop using OpenAL because
it only works with the audio files which are in .caf format, and this
format stores the audio in a 10 times bigger memory space than
mp3. Therefore we transited to AVAudioPlayer which can work
with mp3 files. Every level beginning, the related audios are loaded
and then when their time comes they are played. When the level
ends the audios are deleted from the memory.

3.4 Level Sequencing

Next step was obtaining the sequence of the levels, and learn what
to do one after another. We used a XML file to have a flexible struc-
ture and avoid a hard coded level structure. We parse the XML file
and store the sequence of each level at an array. Then the arrays for
the levels are collected to have an array of levels. This data struc-
ture than used by level controller, to bind the objects and sequences
with the correct levels.

3.5 Game Interaction

Interaction of the game is done by a game controller and the move-
ments of the players head. Game controller works as a hardware
keyboard and sends the button pressing and releases as a unique
character for each button. At the program we handled the events
and stored the state of the buttons to simulate continues movement.
When the head rotation is implemented, we had problems with the
modelview matrix, because the position of the player was always
set wrong after the multiplications. This is solved by having the
offset of the initial position of the player all the time and translating
the player according to this offset.

References



