
Developing a Jump’n’Run Puzzle Game
Results of a practical course at the Chair for Computer Graphics and Multimedia

(RWTH Aachen University, Germany)

Paul Varney Sven Horn

Abstract

Princess S. Cape is a JumpnRun Puzzle game. After various heroes
have failed saving the princess she gets bored and tries to escape on
her own. To do that she has to find her way through a labyrinth of
rooms, find keys and avoid traps.

Keywords: game programming, jump’n’run puzzle game

1 Gameplay & Features

The idea for the gameplay was based on the Game Continuity. [con
] It is basically a JumpnRun game where you can (and have to)
move around the rooms of the level to proceed from one room to
another (see Figure 1).
There are various assets in the game the player interacts with. Keys
can be picked up to activate doors; there are moving platforms,
traps, ladders and jumpboxes. After having completed a full level
and finding the exit the whole level set flips around and another
world starts on the backside.
To make the world a little more vivid there are small animations
like animated torches on the walls or clouds and balloons flying by
the windows.
The graphical style of the game consists of cartoon-like textures and
hand-drawn assets. The target was to make it look like a stage de-
sign from a theatre play or like a dollhouse. The background assets
are 2 dimensional and sometimes that can be seen when running
around in the levels.
We tried to realize this by having different layers: The first one
would be the layer in the front with the player figure, interactive
objects and non-interactive obstacles (like e.g. boxes). The sec-
ond layer has the background objects that stand in the middle of the
room. Then there is the back-wall layer, which is basically a wall
with some decorations and some windows. Through these windows
the background/horizon layer can be seen. On this layer there are
also moving objects like clouds and/or balloons.
Having the objects arranged in this layer structure gives the feeling
that the boxes and bookshelves are not real but only there to make
it more beautiful (like in a stage play as mentioned before).
The inspiration for this idea came from games like Little Big
Planet. [lit ]

Figure 1: Moving tiles to progress from one room to another

Figure 2: Implemented Metaview to move tiles

2 Development Process

At first we started out with 5 team members of which, up to today,
only two are left. This caused various problems and reduced the
features we had planned in the proposal from October.
When we started we had several meetings and also some
brainstorming-sessions via skype and teamspeak to decide the
design, gameplay, features, game name and background story for
our proposal.
We planned to do 4 levelsets on a cube with the menu on the top
side and inventory on the bottom (see Figure 3). The idea of the



menu vanished quickly, since we had so much to do to get the
game itself running we didnt gave the menu a high priority.
Right after we handed in the proposal two of our team members
quit the course, leaving us with a five man proposal and only three
students. After talking to our supervisor we decided to cut down
the proposal a little and continue with the game development.
For the first milestone we had just one hardcoded room, our player
figure dummy could jump and walk around. We used a simple
boundary box collision detection. This is no problem because we
do not use any other models than boxes. Here we just calculate if
the distance between the player and the object is bigger than the
addition of the player size and the size of the object. The problem
was that we had a very low frame rate (40fps-60fps) caused by our
badly organized code and by the way we rendered the scene.
Another problem we encountered while programming the game
logics was that sometimes the player figure got stuck in the ground
or even fell through it. This was due to the fact that the player figure
started out too close to the ground and was pulled downwards by
the gravity. When there was a little lag in gameplay it pulled the
figure through the floor. We managed to solve that problem during
the second milestone by decreasing the gravity value by factor 20
and only increasing it, when there no floor below the player figure.
One of us also worked in blender to make new 3D objects which,
in the end, we didnt really need, because of time issues. The main
reason for that was, that there were lots of other things to do and
that the group together with our supervisor came to the conclusion,
that other 3D shapes than cubes and simple faces would interfere
with the graphical style we had intended, and that we would fake
different shapes with textures. At this moment we realized, that we
would not need an inventory, because the only collectable objects
in the game were keys. We decided to rather have them open doors
or activate other movable objects directly when picking up the key.

In the second milestone we almost had a fully working game.
Most of our interactive assets (like ladders, keys, moving boxes
and jumpboxes) were working as intended, the metaview worked
correctly and the flipping of the world after a level was completed.
This was also when we had the decision to have all levels as indoor
levels and keep the graphical dungeon style as the main style.
For the third milestone meeting we had our code reorganized and
cleaned up which improved the framerate drastically. It also made
working in the code much easier because we had lots of different
small classes for everything. We also finished the game logics
(fixing bugs) in this milestone.
The only thing missing for the final release were some background
assets to make the levels more vivid and the graphical effects one
of our teammembers was working on.
We then added the background assets and added a few animations
(like the walking animation from the player figure).
During all this time our long time third team member was working
on graphical effects. He implemented Depth of Field, which is also
used in the final version of the game. He also worked on shadow
mapping and other effects or fixes of graphical glitches like the
tearing textures due to wrong scaling. Sadly, on the day of the
final deadline he told us that he had left the group and quit the
course with all his work packages unfinished and no chance for
us to finish them. This led to problems and to a game without the
intended graphical effects. If we would have known this earlier,
we could have tried to complete the features he was working on by
ourselves. This was caused by communication errors, but it was
hard to manage because he always told the rest of the group that
everything will be finished right on time.
Maybe redmine could have helped to track the status, but if
someone like in this case would fill in wrong information, even
redmine could not have prevented that from happening.

Figure 3: originally planned cube layout

3 Conclusion

After all, it can be said, that we have planned much more than we
realized in the end. The main reason aside from the reduced team
size was that we did not have much programming experience be-
fore we started this course and underestimated the workload our
ideas caused. We also had communication issues in the group like
e.g. we did not use redmine enough to track our progress, so we
sometimes lost the overview over the things that had to be done or
fixed. We have learned a lot in this course. Our programming skills
advanced and we finally got the impression how much work even
such a little project causes in addition to the programming.
For versioning we would have preferred using a tool with a graph-
ical interface, since it’s just easier to use than command line tools.
Git did work fine, but we needed some time to figure out how it
works, and sometimes still mixed up some of the commands.
For future projects we would definitely use redmine more to make
tasks clearer and working more organized.

References

Continuity. http://continuitygame.com.

Little big planet. http://www.littlebigplanet.com/.


