Developing a Marble Race Game
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Andreas Bring* Tarek Chebbi

Martin Josmann* Julian Schulz?

AR I
,““‘I!H\”l‘
X

Figure 1: Jumping from a high edge and motion blur

Abstract

In the practical course Developing a Marble Race Game the task
was to create a racing game, using a marble as racing object and
concentrate on the graphic output and the game logic (i.e. the code
structure, defining how the game runs). While developing our game
Globus Ex we employed various important parts of a game engine
and shader based graphic effects. In this report, we will cover
some of the implemented techniques superficially and state prob-
lems, which occurred while developing the game.

Keywords: game programming, marble race game, race game,
deferred shading, scenegraph

1 General Information

Globus Ex is an adventure racing game, with a cel shaded look.
The player controls a marble in an open world (in the limits of the
level-design) and conquers different levels, some of which require
puzzling, whereas others require fast thinking and speed in the style
of a typical racing game. The main goal is to reach the end of the
levels or complete them in the given time, ultimately finishing the
game.

2 Graphics and Rendering

2.1 Deferred shading

The main look of the game is very cartoonish, drawing inspiration
from games like The Legend of Zelda: The Wind Waker. For a real-

*andreas.bring @rwth-aachen.de
Ttarek.chebbi @rwth-aachen.de
fmartin.josmann @rwth-aachen.de
$julian.schulz@rwth-aachen.de

time rendering of cartoon-like lights and objects, we changed the
rendering method from the standard forward rendering to the for
our needs more suited deferred rendering. The main advantages for
us are, that this makes it possible to use more than just a few dy-
namic lights and it supports global information about a fragment
in the deferred shader (used in the second render-pass), which is
important for the cel shading outlines and the motion blur effect.
However the deferred rendering disables us from using transparent
objects in the game world, which is, considering the cartoon-like
style of the game, no real issue in our case. For the two-dimensional
overlay (i.e. the user interface) we disabled deferred rendering,
trading unnecessary lighting and global fragment information for
easy transparency.

Deferred shading works by rendering the data, which is normally
combined and directly sent to the output by the graphics card, to
different textures and then combining the information of these in a
second render-pass and send them as output. In our case we used
a total of five textures, which can be seen in Fig.2. Usually only
three textures containing color, depth and normal information for
the fragment are rendered, but to support motion blur we needed
more information than the three textures could support, resulting in
a position texture and a previous position texture. Since the depth
can be calculated from the position texture, we do not render the
depth to a texture separately. Also a fifth data texture stores if and
how many lights affect the current fragment, as well as which ma-
terial the object belonging to this fragment uses. Using multiple
materials with deferred rendering is a common issue, which we re-
solved this way.

2.2 Motion blur

As mentioned before, we use two additional textures in the first
render-pass to save the global position of the fragment in this frame
and the last frame. With the projection and view matrices from both
frames, the positions can be converted to screen-space coordinates

(e)

Figure 2: Textures created in the first render-pass: (a) colors,
(b) normals, (c) data, (d) position and previous position for every
[fragment. (Position and previous position textures only differ a little
bit, unobservable in screen shots) And (e) the result of combining
the five textures in the second render-pass and applying all graphic
effects.

and motion blur is applied, depending on if and how much the frag-
ment has moved.

2.3 Light and shadows

We implemented support for two types of lights: directional and
point lights. Each light has properties for ambient, diffuse and spec-
ular light emission as well as a shadowmap, which are combined
with the information about the fragment and its material properties
in accordance with the Blinn-Phong reflection model. To limit the
area for which shadows need to be generated, we added fog, which
starts after a definable distance and reaches its full opacity after an-
other definable distance.

3 Game logic

3.1 Scenegraph

As abasic layout for all game objects we use a scenegraph structure,
containing transformation-, light-, renderable- and special entity-

nodes. Entities are designed to provide functionality for deriving
classes, such as synchronization with the physics engine and auto-
matically executed code, based on triggers (e.g. collision or every
update). This way new entities with new functionality can be cre-
ated very easily, and are kept separate from other game logic.

3.2 Performance and Space

While developing Globus Ex we faced the issue of low perfor-
mance, due to not filtering and sorting the objects rendered. We
overcame this issue, by implementing a renderer, which iterates
over the scenegraph and registers all renderable objects with their
associated data (textures, matrices). By sorting the objects by their
normalmaps and textures we were able to boost the overall per-
formance of the rendering, because the textures are not sent to the
shader multiple times. The renderer also allows us to filter objects if
they are not visible in the cameras frustum and it takes care of link-
ing the lights and materials used in the scenegraph to the correct
shader.

Because the renderer has all information on lights and renderable
objects, it is also responsible for rendering the shadow maps of all
directional lights to textures. Shadow map generation proved to
be a bottleneck for point lights, which is why we decided not to
implement point light shadows, also regarding the time, we had
left.

Another issue were textures and geometry, which were loaded once
every time they occurred in the level-file. To fix this, we imple-
mented a resource manager, which loads resources only if they were
not already loaded before.

3.3 Levelfiles

For our level files we decided to use a XML-like structure, consist-
ing of tags representing nodes in the scenegraph loaded from the
file. It is read by a reader class, that converts the tags to meth-
ods which are then executed with the parameters of the tag. We
chose this approach, to make the level files easily extendable, with-
out the need of adding significantly more code. Additionally the
various nodes of the scenegraph allow defining simple game logic
in the level file, while the entities support the more advanced game
logic by responding to events. E.g. the switch-node, which ren-
ders different scenegraph subtrees depending on the value of global
variables can be defined in the level file without the need to alter
existing or add code.

3.4 Third party libraries

In our game engine we utilized different libraries. Namely the bul-
let physics engine ([Bul October, 2013]) and the irrKlang audio
library ([Irr]). The former powers our real-time physics simulation
as well as collisions, while the latter supports our game with sounds
and music. Since audio was no requirement and physics and colli-
sions are very complicated topics if they can not be simplified for
certain applications, we decided to include these features as third
party libraries only. Bullets ray-casting functionalities also power
our smart camera implementation, by checking against blockages in
the marbles and cameras vicinity, and calculating the best position
for the camera on this basis.

References

October, 2013. Bullet physics. http://www.bulletphysics.org/.

irrklang audio library. http://www.ambiera.com/irrklang/.

